Solved

Use Transformations to Graph the Function f(x)=4(x1)f(x)=4^{(x-1)} A) Domain of F (,)( - \infty , \infty )

Question 294

Multiple Choice

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function.
- f(x) =4(x1) f(x) =4^{(x-1) }
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0


A) domain of f: (,) ( - \infty , \infty ) ; range of f:(0,) \mathrm { f } : ( 0 , \infty )
horizontal asymptote: y=0y = 0
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0

B) domain of f:(,) f : ( - \infty , \infty ) ; range of f:(0,) f : ( 0 , \infty ) ) horizontal asymptote: y=0y = 0
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0
C) domain of f:(,) \mathrm { f } : ( - \infty , \infty ) ; range of f:(,0) \mathrm { f } : ( - \infty , 0 )
horizontal asymptote: y=0y = 0

 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0

D) domain of f:(,) f : ( - \infty , \infty ) ; range of f:(,0) f : ( - \infty , 0 ) horizontal asymptote: y=0y = 0
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions