Solved

Use Transformations to Graph the Function f(x)=2x+5f(x)=2^{-x}+5 A) Domain Of f:(,)f : ( - \infty , \infty )

Question 396

Multiple Choice

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function.
- f(x) =2x+5f(x) =2^{-x}+5
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =2^{-x}+5    A)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 2 , \infty )   horizontal asymptote:  \mathrm { y } = 2      B)  domain of  \mathrm { f: } ( - \infty , \infty )  ; range of  \mathrm { f } : ( 5 , \infty )    horizontal asymptote:  \mathrm { y } = 5    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( 2 , \infty )    horizontal asymptote:  \mathrm { y } = 2      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 5 , \infty )   horizontal asymptote:  y = 5


A) domain of f:(,) f : ( - \infty , \infty ) ; range of f:(2,) f : ( 2 , \infty )
horizontal asymptote: y=2\mathrm { y } = 2

 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =2^{-x}+5    A)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 2 , \infty )   horizontal asymptote:  \mathrm { y } = 2      B)  domain of  \mathrm { f: } ( - \infty , \infty )  ; range of  \mathrm { f } : ( 5 , \infty )    horizontal asymptote:  \mathrm { y } = 5    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( 2 , \infty )    horizontal asymptote:  \mathrm { y } = 2      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 5 , \infty )   horizontal asymptote:  y = 5

B) domain of f:(,) \mathrm { f: } ( - \infty , \infty ) ; range of f:(5,) \mathrm { f } : ( 5 , \infty ) horizontal asymptote: y=5\mathrm { y } = 5
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =2^{-x}+5    A)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 2 , \infty )   horizontal asymptote:  \mathrm { y } = 2      B)  domain of  \mathrm { f: } ( - \infty , \infty )  ; range of  \mathrm { f } : ( 5 , \infty )    horizontal asymptote:  \mathrm { y } = 5    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( 2 , \infty )    horizontal asymptote:  \mathrm { y } = 2      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 5 , \infty )   horizontal asymptote:  y = 5
C) domain of f:(,) \mathrm { f } : ( - \infty , \infty ) ; range of f:(2,) \mathrm { f } : ( 2 , \infty )
horizontal asymptote: y=2\mathrm { y } = 2

 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =2^{-x}+5    A)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 2 , \infty )   horizontal asymptote:  \mathrm { y } = 2      B)  domain of  \mathrm { f: } ( - \infty , \infty )  ; range of  \mathrm { f } : ( 5 , \infty )    horizontal asymptote:  \mathrm { y } = 5    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( 2 , \infty )    horizontal asymptote:  \mathrm { y } = 2      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 5 , \infty )   horizontal asymptote:  y = 5

D) domain of f:(,) f : ( - \infty , \infty ) ; range of f:(5,) f : ( 5 , \infty ) horizontal asymptote: y=5y = 5
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =2^{-x}+5    A)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 2 , \infty )   horizontal asymptote:  \mathrm { y } = 2      B)  domain of  \mathrm { f: } ( - \infty , \infty )  ; range of  \mathrm { f } : ( 5 , \infty )    horizontal asymptote:  \mathrm { y } = 5    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( 2 , \infty )    horizontal asymptote:  \mathrm { y } = 2      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 5 , \infty )   horizontal asymptote:  y = 5

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions