Solved

Use the Factor Theorem to Determine Whether X - C f(x)=x4+10x3+7x2+61x90;c=10f ( x ) = x ^ { 4 } + 10 x ^ { 3 } + 7 x ^ { 2 } + 61 x - 90 ; c = - 10

Question 275

Multiple Choice

Use the Factor Theorem to determine whether x - c is a factor of f. If it is, write f in factored form, that is, write f in the
form f(x) = (x - c) (quotient) .
- f(x) =x4+10x3+7x2+61x90;c=10f ( x ) = x ^ { 4 } + 10 x ^ { 3 } + 7 x ^ { 2 } + 61 x - 90 ; c = - 10


A) Yes; f(x) =(x+10) (x3+7x9) \mathrm { f } ( \mathrm { x } ) = ( \mathrm { x } + 10 ) \left( \mathrm { x } ^ { 3 } + 7 \mathrm { x } - 9 \right)
B) Yes; f(x) =(x10) (x3+7x+9) f ( x ) = ( x - 10 ) \left( x ^ { 3 } + 7 x + 9 \right)
C) No
D) Yes; f(x) =(x+10) (x3+x9) f ( x ) = ( x + 10 ) \left( x ^ { 3 } + x - 9 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions