Solved

A Geometric Sequence Is Given {2(12)n1}\left\{ 2 \left( \frac { 1 } { 2 } \right) ^ { n - 1 } \right\}

Question 64

Multiple Choice

A geometric sequence is given. Find the common ratio and write out the first four terms.
- {2(12) n1}\left\{ 2 \left( \frac { 1 } { 2 } \right) ^ { n - 1 } \right\}


A) an=2(2) n1a _ { n } = 2 \cdot ( 2 ) ^ { n - 1 }
r=2;2,4,8,16,\mathrm { r } = 2 ; 2,4,8,16 , \ldots

B) an=2(14) n1a _ { n } = 2 \left( \frac { 1 } { 4 } \right) ^ { n - 1 }
r=14;2,12,18,132,\mathrm { r } = \frac { 1 } { 4 } ; 2 , \frac { 1 } { 2 } , \frac { 1 } { 8 } , \frac { 1 } { 32 } , \ldots

C) an=2(12) n1a _ { n } = 2 \left( \frac { 1 } { 2 } \right) ^ { n - 1 }
r=12;2,1,12,14,\mathrm { r } = \frac { 1 } { 2 } ; 2,1 , \frac { 1 } { 2 } , \frac { 1 } { 4 } , \ldots

D) an=12(2) n1\mathrm { a } _ { \mathrm { n } } = \frac { 1 } { 2 } ( 2 ) ^ { \mathrm { n } - 1 }
r=12;2,4,8,16,\mathrm { r } = \frac { 1 } { 2 } ; 2,4,8,16 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions