Solved

Determine Whether the Graph Is That of a Function {xπxπ} \{x \mid-\pi \leq x \leq \pi\}

Question 17

Multiple Choice

Determine whether the graph is that of a function. If it is, use the graph to find its domain and range, the intercepts, if
any, and any symmetry with respect to the x-axis, the y-axis, or the origin.
- Determine whether the graph is that of a function. If it is, use the graph to find its domain and range, the intercepts, if any, and any symmetry with respect to the x-axis, the y-axis, or the origin. -   A)  function domain:   \{x \mid-\pi \leq x \leq \pi\}   range:   \{y \mid-1 \leq y \leq 1\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: origin  B)  function domain: all real numbers range:   \{\mathrm{y} \mid-1 \leq \mathrm{y} \leq 1\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: origin  C)  function domain:   \{x \mid-1 \leq x \leq 1\}   range:   \{y \mid-\pi \leq y \leq \pi\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: none  D)   \text { not a function }


A)
function
domain: {xπxπ} \{x \mid-\pi \leq x \leq \pi\}
range: {y1y1} \{y \mid-1 \leq y \leq 1\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: origin

B)
function
domain: all real numbers
range: {y1y1} \{\mathrm{y} \mid-1 \leq \mathrm{y} \leq 1\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: origin

C)
function
domain: {x1x1} \{x \mid-1 \leq x \leq 1\}
range: {yπyπ} \{y \mid-\pi \leq y \leq \pi\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: none

D)
 not a function \text { not a function }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions