Solved

Solve the Problem P1,P2\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 }

Question 56

Multiple Choice

Solve the problem.
-Find the length of each side of the triangle determined by the three points P1,P2\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } , and P3\mathrm { P } _ { 3 } . State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both.
P1=(5,4) ,P2=(3,4) ,P3=(0,1) \mathrm { P } _ { 1 } = ( - 5 , - 4 ) , \mathrm { P } _ { 2 } = ( - 3,4 ) , \mathrm { P } _ { 3 } = ( 0 , - 1 )


A) d(P1,P2) =217;d(P2,P3) =34;d(P1,P3) =52\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 }
neither
B) d(P1,P2) =217;d(P2,P3) =34;d(P1,P3) =52\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 }
right triangle
C) d(P1,P2) =217;d(P2,P3) =34;d(P1,P3) =34\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 }
both
D) d(P1,P2) =217;d(P2,P3) =34;d(P1,P3) =34\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 }
isosceles triangle

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions