Solved

Write a Formula for the General Term (The Nth Term) an\mathbf { a } _ { \mathbf { n } }

Question 40

Multiple Choice

Write a formula for the general term (the nth term) of the arithmetic sequence. Then use the formula for an\mathbf { a } _ { \mathbf { n } } to find a20a _ { 20 } , the 20th term of the sequence.
- a1=45, d=25\mathrm { a } _ { 1 } = - \frac { 4 } { 5 } , \mathrm {~d} = \frac { 2 } { 5 }


A) an=25n65;a20=345a _ { n } = \frac { 2 } { 5 } n - \frac { 6 } { 5 } ; a _ { 20 } = \frac { 34 } { 5 }
B) an=25n45;a20=365a _ { n } = \frac { 2 } { 5 } n - \frac { 4 } { 5 } ; a _ { 20 } = \frac { 36 } { 5 }
C) an=45n+65;a20=745a _ { n } = - \frac { 4 } { 5 } n + \frac { 6 } { 5 } ; a _ { 20 } = - \frac { 74 } { 5 }
D) an=45n+25;a20=785a _ { n } = - \frac { 4 } { 5 } n + \frac { 2 } { 5 } ; a _ { 20 } = - \frac { 78 } { 5 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions