Solved

The General Term of a Sequence Is Given  Year 1995199619971998 Population in millions 12.2012.8113.4514.12\begin{array} { l | l l l } \text { Year } & 1995199619971998 \\\hline \text { Population in millions } & 12.2012 .8113 .4514 .12\end{array}

Question 90

Multiple Choice

The general term of a sequence is given. Determine whether the given sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference; if it is geometric, find the common ratio.
-The following table shows a country's population from 1995 to 1998:  Year 1995199619971998 Population in millions 12.2012.8113.4514.12\begin{array} { l | l l l } \text { Year } & 1995199619971998 \\\hline \text { Population in millions } & 12.2012 .8113 .4514 .12\end{array} Divide the population for each year by the population in the preceding year. Use this ratio to write the general term of the geometric sequence describing the country's population growth n years after 1994. Then estimate the country's population, in millions, in 2005.


A) an=12.20(1.05) n1;19.87 million \mathrm { a } _ { \mathrm { n } } = 12.20 ( 1.05 ) ^ { \mathrm { n } - 1 ; 19.87 \text { million } }
B) an=12.20(1.05) n1;20.87a _ { n } = 12.20 ( 1.05 ) ^ { n - 1 ; } 20.87 million
C) an=12.20(1.04) n1;24\mathrm { a } _ { \mathrm { n } } = 12.20 ( 1.04 ) ^ { \mathrm { n } - 1 } ; 24 million
D) an=12.20(1.04) n1;22.43 million a _ { n } = 12.20 ( 1.04 ) ^ { n - 1 ; 22.43 \text { million } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions