Solved

Graph the Polar Equations of Conics
- r=22cosθr = \frac { 2 } { 2 - \cos \theta } \quad

Question 157

Multiple Choice

Graph the Polar Equations of Conics
- r=22cosθr = \frac { 2 } { 2 - \cos \theta } \quad Identify the directrix and vertices.
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the left of the pole at  x = - 2  vertices:  \left( \frac { 2 } { 3 } , \pi \right)  , ( 2,0 )      B)  directrix: 2 unit(s)  to the right of the pole at  x = 2  vertices:  \left( - \frac { 2 } { 3 } , \pi \right)  , ( 2 , \pi )     C)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 2 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 2 , \frac { \pi } { 2 } \right)


A) directrix: 2 unit(s) to the left of
the pole at x=2x = - 2
vertices: (23,π) ,(2,0) \left( \frac { 2 } { 3 } , \pi \right) , ( 2,0 )
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the left of the pole at  x = - 2  vertices:  \left( \frac { 2 } { 3 } , \pi \right)  , ( 2,0 )      B)  directrix: 2 unit(s)  to the right of the pole at  x = 2  vertices:  \left( - \frac { 2 } { 3 } , \pi \right)  , ( 2 , \pi )     C)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 2 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 2 , \frac { \pi } { 2 } \right)

B) directrix: 2 unit(s) to the right of
the pole at x=2x = 2
vertices: (23,π) ,(2,π) \left( - \frac { 2 } { 3 } , \pi \right) , ( 2 , \pi )
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the left of the pole at  x = - 2  vertices:  \left( \frac { 2 } { 3 } , \pi \right)  , ( 2,0 )      B)  directrix: 2 unit(s)  to the right of the pole at  x = 2  vertices:  \left( - \frac { 2 } { 3 } , \pi \right)  , ( 2 , \pi )     C)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 2 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 2 , \frac { \pi } { 2 } \right)
C) directrix: 2 unit(s) below
the pole at y=2\mathrm { y } = - 2
vertices: (23,π2) ,(2,π2) \left( - \frac { 2 } { 3 } , \frac { \pi } { 2 } \right) , \left( 2 , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the left of the pole at  x = - 2  vertices:  \left( \frac { 2 } { 3 } , \pi \right)  , ( 2,0 )      B)  directrix: 2 unit(s)  to the right of the pole at  x = 2  vertices:  \left( - \frac { 2 } { 3 } , \pi \right)  , ( 2 , \pi )     C)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 2 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 2 , \frac { \pi } { 2 } \right)
D) directrix: 2 unit(s) above
the pole at y=2\mathrm { y } = 2
vertices: (23,π2) ,(2,π2) \left( \frac { 2 } { 3 } , \frac { \pi } { 2 } \right) , \left( - 2 , \frac { \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 2 } { 2 - \cos \theta } \quad  Identify the directrix and vertices.   A)  directrix: 2 unit(s)  to the left of the pole at  x = - 2  vertices:  \left( \frac { 2 } { 3 } , \pi \right)  , ( 2,0 )      B)  directrix: 2 unit(s)  to the right of the pole at  x = 2  vertices:  \left( - \frac { 2 } { 3 } , \pi \right)  , ( 2 , \pi )     C)  directrix: 2 unit(s)  below the pole at  \mathrm { y } = - 2  vertices:  \left( - \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( 2 , \frac { \pi } { 2 } \right)     D)  directrix: 2 unit(s)  above the pole at  \mathrm { y } = 2  vertices:  \left( \frac { 2 } { 3 } , \frac { \pi } { 2 } \right)  , \left( - 2 , \frac { \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions