Solved

Graph the Polar Equations of Conics
- r=155+10sinθr = \frac { 15 } { 5 + 10 \sin \theta } \quad

Question 118

Multiple Choice

Graph the Polar Equations of Conics
- r=155+10sinθr = \frac { 15 } { 5 + 10 \sin \theta } \quad Identify the directrix and vertices.
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )


A) directrix: 32\frac { 3 } { 2 } unit(s) abovethe pole at y=32y = \frac { 3 } { 2 }
vertices: (1,π2) ,(3,3π2) \left( 1 , \frac { \pi } { 2 } \right) , \left( 3 , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )
B) directrix: 32\frac { 3 } { 2 } unit(s) below
the pole at y=32y = - \frac { 3 } { 2 }
vertices: (1,π2) ,(3,3π2) \left( 1 , \frac { \pi } { 2 } \right) , \left( 3 , \frac { 3 \pi } { 2 } \right)
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )
C) directrix: 32\frac { 3 } { 2 } unit(s) to the left ofthe pole at x=32x = - \frac { 3 } { 2 }
vertices: (1,0) ,(3,π) ( 1,0 ) , ( 3 , \pi )
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )
D) directrix: 32\frac { 3 } { 2 } unit(s) to the right of
the pole at x=32x = \frac { 3 } { 2 }
vertices: (1,0) ,(3,π) ( 1,0 ) , ( 3 , \pi )
 Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.   A)  directrix:  \frac { 3 } { 2 }  unit(s)  abovethe pole at  y = \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     B)  directrix:  \frac { 3 } { 2 }  unit(s)  below the pole at  y = - \frac { 3 } { 2 }  vertices:  \left( 1 , \frac { \pi } { 2 } \right)  , \left( 3 , \frac { 3 \pi } { 2 } \right)     C)  directrix:  \frac { 3 } { 2 }  unit(s)  to the left ofthe pole at  x = - \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )     D)  directrix:  \frac { 3 } { 2 }  unit(s)  to the right of the pole at  x = \frac { 3 } { 2 }  vertices:  ( 1,0 )  , ( 3 , \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions