Solved

Inconsistent and Dependent Systems and Their Applications
1 Apply Gaussian x+y+z=92x3y+4z=7x4y+3z=2\begin{array} { r r } x + y + z & = 9 \\2 x - 3 y + 4 z & = 7 \\x - 4 y + 3 z & = - 2\end{array}

Question 35

Multiple Choice

Inconsistent and Dependent Systems and Their Applications
1 Apply Gaussian Elimination to Systems Without Unique Solutions
- x+y+z=92x3y+4z=7x4y+3z=2\begin{array} { r r } x + y + z & = 9 \\2 x - 3 y + 4 z & = 7 \\x - 4 y + 3 z & = - 2\end{array}


A) {(7z5+345,2z5+115,z) }\left\{ \left( - \frac { 7 z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } + \frac { 11 } { 5 } , z \right) \right\}
B) {(z5+345,2z5+115,z) }\left\{ \left( \frac { z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } + \frac { 11 } { 5 } , z \right) \right\}
C) {(7z5+345,2z5115,z) }\left\{ \left( - \frac { 7 z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } - \frac { 11 } { 5 } , z \right) \right\}
D) {(7z5+345,2z5115,z) }\left\{ \left( \frac { 7 z } { 5 } + \frac { 34 } { 5 } , \frac { 2 z } { 5 } - \frac { 11 } { 5 } , \mathrm { z } \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions