Solved

Inconsistent and Dependent Systems and Their Applications
1 Apply Gaussian xy+zw=102x+3y+5w=28x+2y+8z+3w=10x4y6z5w=30\begin{array} { r } x - y + z - w = 10 \\- 2 x + 3 y + 5 w = - 28 \\x + 2 y + 8 z + 3 w = - 10 \\x - 4 y - 6 z - 5 w = 30\end{array}

Question 63

Multiple Choice

Inconsistent and Dependent Systems and Their Applications
1 Apply Gaussian Elimination to Systems Without Unique Solutions
- xy+zw=102x+3y+5w=28x+2y+8z+3w=10x4y6z5w=30\begin{array} { r } x - y + z - w = 10 \\- 2 x + 3 y + 5 w = - 28 \\x + 2 y + 8 z + 3 w = - 10 \\x - 4 y - 6 z - 5 w = 30\end{array}


A) {(17w10,13w16,5w+4,w) }\{ ( - 17 w - 10 , - 13 w - 16,5 w + 4 , w ) \}
B) {(3w2,8w+3,4w+9,w) }\{ ( 3 w - 2 , - 8 w + 3,4 w + 9 , w ) \}
C) {(24,10,6,2) }\{ ( 24,10 , - 6 , - 2 ) \}
D) \varnothing

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions