Solved

Evaluate a Third-Order Determinant
-Determinants Are Used to Show That x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 ,

Question 9

Multiple Choice

Evaluate a Third-Order Determinant
-Determinants are used to show that three points lie on the same line (are collinear) . If
x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 ,
then the points (x1,y1) ,(x2,y2) \left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3) \left( x _ { 3 } , y _ { 3 } \right) are collinear. If the determinant does not equal 0 , then the points are not collinear. Are the points (4,4) ,(0,3) ( 4 , - 4 ) , ( 0,3 ) , and (20,32) ( 20 , - 32 ) collinear?


A) Yes
B) No\mathrm { No }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions