Solved

Find Roots of Complex Numbers in Polar Form
-The Complex 2(cos2π3+isin2π3)2 \left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)

Question 222

Multiple Choice

Find Roots of Complex Numbers in Polar Form
-The complex square roots of 2(cos2π3+isin2π3) 2 \left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right) (rectangular form)


A) 22+62i,2262i\frac { \sqrt { 2 } } { 2 } + \frac { \sqrt { 6 } } { 2 } i , - \frac { \sqrt { 2 } } { 2 } - \frac { \sqrt { 6 } } { 2 } i
B) 2262i,22+62i\frac { \sqrt { 2 } } { 2 } - \frac { \sqrt { 6 } } { 2 } i , - \frac { \sqrt { 2 } } { 2 } + \frac { \sqrt { 6 } } { 2 } i
C) 6+2i,62i\sqrt { 6 } + \sqrt { 2 } i , - \sqrt { 6 } - \sqrt { 2 } i
D) 62i,62i6 - 2 \mathrm { i } , - 6 - 2 \mathrm { i }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions