Solved

Additional Concepts
- x3(63+6i)=0x ^ { 3 } - ( - 6 \sqrt { 3 } + 6 i ) = 0

Question 158

Multiple Choice

Additional Concepts
- x3(63+6i) =0x ^ { 3 } - ( - 6 \sqrt { 3 } + 6 i ) = 0


A) 123(cos50+isin50) ,123(cos170+isin170) ,123(cos290+isin290) \sqrt [ 3 ] { 12 } \left( \cos 50 ^ { \circ } + i \sin 50 ^ { \circ } \right) , \sqrt [ 3 ] { 12 } \left( \cos 170 ^ { \circ } + i \sin 170 ^ { \circ } \right) , \sqrt [ 3 ] { 12 } \left( \cos 290 ^ { \circ } + i \sin 290 ^ { \circ } \right)
B) 63(cos70+isin70) ,63(cos190+isin190) ,63(cos310+isin310) \sqrt [ 3 ] { 6 } \left( \cos 70 ^ { \circ } + i \sin 70 ^ { \circ } \right) , \sqrt [ 3 ] { 6 } \left( \cos 190 ^ { \circ } + i \sin 190 ^ { \circ } \right) , \sqrt [ 3 ] { 6 } \left( \cos 310 ^ { \circ } + i \sin 310 ^ { \circ } \right)
C) 123(cos50+isin50) ,123(cos170+isin170) ,123(cos270+isin270) \sqrt [ 3 ] { 12 } \left( \cos 50 ^ { \circ } + i \sin 50 ^ { \circ } \right) , \sqrt [ 3 ] { 12 } \left( \cos 170 ^ { \circ } + i \sin 170 ^ { \circ } \right) , \sqrt [ 3 ] { 12 } \left( \cos 270 ^ { \circ } + i \sin 270 ^ { \circ } \right)
D) 6(cos70+isin70) ,6(cos190+isin190) ,6(cos310+isin310) \sqrt { 6 } \left( \cos 70 ^ { \circ } + i \sin 70 ^ { \circ } \right) , \sqrt { 6 } \left( \cos 190 ^ { \circ } + i \sin 190 ^ { \circ } \right) , \sqrt { 6 } \left( \cos 310 ^ { \circ } + i \sin 310 ^ { \circ } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions