Solved

Find the Projection of a Vector onto Another Vector
- v=3i+2j;w=2i+j\mathbf { v } = 3 \mathbf { i } + 2 \mathbf { j } ; \mathbf { w } = - 2 \mathbf { i } + \mathbf { j }

Question 205

Multiple Choice

Find the Projection of a Vector onto Another Vector
- v=3i+2j;w=2i+j\mathbf { v } = 3 \mathbf { i } + 2 \mathbf { j } ; \mathbf { w } = - 2 \mathbf { i } + \mathbf { j }


A) 45(2i+j) - \frac { 4 } { 5 } ( - 2 \mathbf { i } + \mathbf { j } )
B) 15(2i+j) \frac { 1 } { 5 } ( - 2 \mathbf { i } + \mathbf { j } )
C) 1(2i+j) - 1 ( - 2 \mathbf { i } + \mathbf { j } )
D) 145(2i+j) \frac { 14 } { 5 } ( - 2 \mathbf { i } + \mathbf { j } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions