Solved

Decompose V into Two Vectors V1 and V2, Where V1 v=2i+3j,w=3i+j\mathbf { v } = - 2 \mathbf { i } + 3 \mathbf { j } , \mathbf { w } = 3 \mathbf { i } + \mathbf { j }

Question 214

Multiple Choice

Decompose v into two vectors v1 and v2, where v1 is parallel to w and v2 is orthogonal to w.
- v=2i+3j,w=3i+j\mathbf { v } = - 2 \mathbf { i } + 3 \mathbf { j } , \mathbf { w } = 3 \mathbf { i } + \mathbf { j }


A) v1=310(3i+j) ,v2=1110i+3310j\mathbf { v } _ { 1 } = - \frac { 3 } { 10 } ( 3 \mathbf { i } + \mathbf { j } ) , \mathbf { v } _ { 2 } = - \frac { 11 } { 10 } \mathbf { i } + \frac { 33 } { 10 } \mathbf { j }
B) v1=310(3i+j) ,v2=1710i+125j\mathbf { v } _ { 1 } = - \frac { 3 } { 10 } ( 3 i + \mathbf { j } ) , \mathbf { v } _ { 2 } = - \frac { 17 } { 10 } \mathbf { i } + \frac { 12 } { 5 } \mathbf { j }
C) v1=13(3i+j) ,v2=1i+103j\mathbf { v } _ { 1 } = - \frac { 1 } { 3 } ( 3 i + j ) , v _ { 2 } = - 1 i + \frac { 10 } { 3 } j
D) v1=310(3i+j) ,v2=710i+3910j\mathbf { v } _ { 1 } = - \frac { 3 } { 10 } ( 3 i + j ) , v _ { 2 } = \frac { 7 } { 10 } \mathbf { i } + \frac { 39 } { 10 } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions