Solved

Use the Formula for the Cosine of the Difference of Two

Question 37

Multiple Choice

Use the Formula for the Cosine of the Difference of Two Angles
- cos(7π18) cos(2π9) +sin(7π18) sin(2π9) \cos \left( \frac { 7 \pi } { 18 } \right) \cos \left( \frac { 2 \pi } { 9 } \right) + \sin \left( \frac { 7 \pi } { 18 } \right) \sin \left( \frac { 2 \pi } { 9 } \right)


A) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = \frac { 2 \pi } { 9 }
B) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = - \frac { 2 \pi } { 9 }
C) α=2π9,β=7π18\alpha = - \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 }
D) α=2π9,β=7π18\alpha = \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 } Write the expression as the cosine of an angle, knowing that the expression is the right side of the formula for cos(αβ)  with particular values for α and β.\cos ( \alpha - \beta ) \text { with particular values for } \alpha \text { and } \beta .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions