Solved

Solve the Polynomial Inequality and Graph the Solution Set on a Number

Question 270

Multiple Choice

Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval
notation.
- (3x5) (x+1) 0( 3 x - 5 ) ( x + 1 ) \leq 0
 Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval notation. - ( 3 x - 5 )  ( x + 1 )  \leq 0    A)   \left[ - 1 , \frac { 5 } { 3 } \right]    B)   ( - \infty , - 1 ] \cup \left[ \frac { 5 } { 3 } , \infty \right]    C)   \left( - \infty , \frac { 5 } { 3 } \right]    D)   [ - 1 , \infty )


A) [1,53]\left[ - 1 , \frac { 5 } { 3 } \right]
 Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval notation. - ( 3 x - 5 )  ( x + 1 )  \leq 0    A)   \left[ - 1 , \frac { 5 } { 3 } \right]    B)   ( - \infty , - 1 ] \cup \left[ \frac { 5 } { 3 } , \infty \right]    C)   \left( - \infty , \frac { 5 } { 3 } \right]    D)   [ - 1 , \infty )
B) (,1][53,]( - \infty , - 1 ] \cup \left[ \frac { 5 } { 3 } , \infty \right]
 Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval notation. - ( 3 x - 5 )  ( x + 1 )  \leq 0    A)   \left[ - 1 , \frac { 5 } { 3 } \right]    B)   ( - \infty , - 1 ] \cup \left[ \frac { 5 } { 3 } , \infty \right]    C)   \left( - \infty , \frac { 5 } { 3 } \right]    D)   [ - 1 , \infty )
C) (,53]\left( - \infty , \frac { 5 } { 3 } \right]
 Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval notation. - ( 3 x - 5 )  ( x + 1 )  \leq 0    A)   \left[ - 1 , \frac { 5 } { 3 } \right]    B)   ( - \infty , - 1 ] \cup \left[ \frac { 5 } { 3 } , \infty \right]    C)   \left( - \infty , \frac { 5 } { 3 } \right]    D)   [ - 1 , \infty )
D) [1,) [ - 1 , \infty )
 Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval notation. - ( 3 x - 5 )  ( x + 1 )  \leq 0    A)   \left[ - 1 , \frac { 5 } { 3 } \right]    B)   ( - \infty , - 1 ] \cup \left[ \frac { 5 } { 3 } , \infty \right]    C)   \left( - \infty , \frac { 5 } { 3 } \right]    D)   [ - 1 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions