Solved

Solve the Rational Inequality and Graph the Solution Set on a Real

Question 186

Multiple Choice

Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval
notation.
- x2x+50\frac { - x - 2 } { x + 5 } \leq 0
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { - x - 2 } { x + 5 } \leq 0    A)   ( - \infty , - 5 )   or  [ - 2 , \infty )     B)   ( - 5 , - 2 ]    C)   ( - \infty , - 5 ]  or  [ - 2 , \infty )     D)   [ - 2 , \infty )


A) (,5) ( - \infty , - 5 ) or [2,) [ - 2 , \infty )
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { - x - 2 } { x + 5 } \leq 0    A)   ( - \infty , - 5 )   or  [ - 2 , \infty )     B)   ( - 5 , - 2 ]    C)   ( - \infty , - 5 ]  or  [ - 2 , \infty )     D)   [ - 2 , \infty )
B) (5,2]( - 5 , - 2 ]
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { - x - 2 } { x + 5 } \leq 0    A)   ( - \infty , - 5 )   or  [ - 2 , \infty )     B)   ( - 5 , - 2 ]    C)   ( - \infty , - 5 ]  or  [ - 2 , \infty )     D)   [ - 2 , \infty )
C) (,5]( - \infty , - 5 ] or [2,) [ - 2 , \infty )
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { - x - 2 } { x + 5 } \leq 0    A)   ( - \infty , - 5 )   or  [ - 2 , \infty )     B)   ( - 5 , - 2 ]    C)   ( - \infty , - 5 ]  or  [ - 2 , \infty )     D)   [ - 2 , \infty )
D) [2,) [ - 2 , \infty )
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { - x - 2 } { x + 5 } \leq 0    A)   ( - \infty , - 5 )   or  [ - 2 , \infty )     B)   ( - 5 , - 2 ]    C)   ( - \infty , - 5 ]  or  [ - 2 , \infty )     D)   [ - 2 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions