Solved

Solve the Rational Inequality and Graph the Solution Set on a Real

Question 148

Multiple Choice

Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval
notation.
- (x+5) (x2) x10\frac { ( x + 5 ) ( x - 2 ) } { x - 1 } \geq 0
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { ( x + 5 )  ( x - 2 )  } { x - 1 } \geq 0    A)   [ - 5,1 )  \cup [ 2 , \infty )     B)   ( - \infty , - 5 ] \cup ( 1,2 ]    C)   ( - \infty , - 5 ] \cup [ 2 , \infty )     D)   [ - 5,1 ] \cup [ 2 , \infty )


A) [5,1) [2,) [ - 5,1 ) \cup [ 2 , \infty )
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { ( x + 5 )  ( x - 2 )  } { x - 1 } \geq 0    A)   [ - 5,1 )  \cup [ 2 , \infty )     B)   ( - \infty , - 5 ] \cup ( 1,2 ]    C)   ( - \infty , - 5 ] \cup [ 2 , \infty )     D)   [ - 5,1 ] \cup [ 2 , \infty )
B) (,5](1,2]( - \infty , - 5 ] \cup ( 1,2 ]
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { ( x + 5 )  ( x - 2 )  } { x - 1 } \geq 0    A)   [ - 5,1 )  \cup [ 2 , \infty )     B)   ( - \infty , - 5 ] \cup ( 1,2 ]    C)   ( - \infty , - 5 ] \cup [ 2 , \infty )     D)   [ - 5,1 ] \cup [ 2 , \infty )
C) (,5][2,) ( - \infty , - 5 ] \cup [ 2 , \infty )
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { ( x + 5 )  ( x - 2 )  } { x - 1 } \geq 0    A)   [ - 5,1 )  \cup [ 2 , \infty )     B)   ( - \infty , - 5 ] \cup ( 1,2 ]    C)   ( - \infty , - 5 ] \cup [ 2 , \infty )     D)   [ - 5,1 ] \cup [ 2 , \infty )
D) [5,1][2,) [ - 5,1 ] \cup [ 2 , \infty )
 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. - \frac { ( x + 5 )  ( x - 2 )  } { x - 1 } \geq 0    A)   [ - 5,1 )  \cup [ 2 , \infty )     B)   ( - \infty , - 5 ] \cup ( 1,2 ]    C)   ( - \infty , - 5 ] \cup [ 2 , \infty )     D)   [ - 5,1 ] \cup [ 2 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions