Solved

Choose the One Alternative That Best Completes the Statement or Answers

Question 170

Multiple Choice

Choose the one alternative that best completes the statement or answers the question. Graph ff as a solid line and f1\mathrm { f } ^ { - 1 } as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of ff and f1f ^ { - 1 } .
- f(x) =x21,x0f ( x ) = x ^ { 2 } - 1 , x \geq 0
 Choose the one alternative that best completes the statement or answers the question. Graph  f  as a solid line and  \mathrm { f } ^ { - 1 }  as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of  f  and  f ^ { - 1 } . - f ( x )  = x ^ { 2 } - 1 , x \geq 0     A)    f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    B)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )     C)     f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( 1 , \infty )    D)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( 1 , \infty )


A)  Choose the one alternative that best completes the statement or answers the question. Graph  f  as a solid line and  \mathrm { f } ^ { - 1 }  as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of  f  and  f ^ { - 1 } . - f ( x )  = x ^ { 2 } - 1 , x \geq 0     A)    f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    B)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )     C)     f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( 1 , \infty )    D)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( 1 , \infty )
ff domain =(0,) = ( 0 , \infty ) ; range =(1,) = ( - 1 , \infty )
f1f ^ { - 1 } domain =(0,) = ( 0 , \infty ) ; range =(1,) = ( - 1 , \infty )

B)  Choose the one alternative that best completes the statement or answers the question. Graph  f  as a solid line and  \mathrm { f } ^ { - 1 }  as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of  f  and  f ^ { - 1 } . - f ( x )  = x ^ { 2 } - 1 , x \geq 0     A)    f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    B)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )     C)     f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( 1 , \infty )    D)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( 1 , \infty )
ff domain =(,) = ( - \infty , \infty ) ; range =(1,) = ( - 1 , \infty )
f1f ^ { - 1 } domain =(,) = ( - \infty , \infty ) ; range =(1,) = ( - 1 , \infty )


C)  Choose the one alternative that best completes the statement or answers the question. Graph  f  as a solid line and  \mathrm { f } ^ { - 1 }  as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of  f  and  f ^ { - 1 } . - f ( x )  = x ^ { 2 } - 1 , x \geq 0     A)    f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    B)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )     C)     f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( 1 , \infty )    D)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( 1 , \infty )
ff domain =(0,) = ( 0 , \infty ) ; range =(1,) = ( - 1 , \infty )
f1f ^ { - 1 } domain =(0,) = ( 0 , \infty ) ; range =(1,) = ( 1 , \infty )

D)  Choose the one alternative that best completes the statement or answers the question. Graph  f  as a solid line and  \mathrm { f } ^ { - 1 }  as a dashed line in the same rectangular coordinate space. Use interval notation to give the domain and range of  f  and  f ^ { - 1 } . - f ( x )  = x ^ { 2 } - 1 , x \geq 0     A)    f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    B)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )     C)     f  domain  = ( 0 , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( 0 , \infty )  ; range  = ( 1 , \infty )    D)    f  domain  = ( - \infty , \infty )  ; range  = ( - 1 , \infty )    f ^ { - 1 }  domain  = ( - \infty , \infty )  ; range  = ( 1 , \infty )
ff domain =(,) = ( - \infty , \infty ) ; range =(1,) = ( - 1 , \infty )
f1f ^ { - 1 } domain =(,) = ( - \infty , \infty ) ; range =(1,) = ( 1 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions