Solved

Solve the Problem d\mathrm { d } , That a Spring Is Compressed from Its Natural, Uncompressed

Question 185

Multiple Choice

Solve the problem.
-The number of centimeters, d\mathrm { d } , that a spring is compressed from its natural, uncompressed position is given by the formula d=2 Wk\mathrm { d } = \sqrt { \frac { 2 \mathrm {~W} } { \mathrm { k } } } , where W\mathrm { W } is the number of joules of work done to move the spring and k\mathrm { k } is the spring constant. Solve this equation for W. Use the result to determine the work needed to move a spring 3 centimeters if it has a spring constant of 0.20.2 .


A) W=d2k2;0.9\mathrm { W } = \frac { \mathrm { d } ^ { 2 } \mathrm { k } } { 2 } ; 0.9 joules
B) W=d2k24;0.1\mathrm { W } = \frac { \mathrm { d } ^ { 2 } \mathrm { k } ^ { 2 } } { 4 } ; 0.1 joules
C) W=2d2k;90W = \frac { 2 d ^ { 2 } } { k } ; 90 joules
D) W=2 d2k;3.6\mathrm { W } = 2 \mathrm {~d} ^ { 2 } \mathrm { k } ; 3.6 joules

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions