Solved

Use the Summation Properties to Evaluate the Series - i=14(4i2+3i1)\sum _ { i = 1 } ^ { 4 } \left( 4 i ^ { 2 } + 3 i - 1 \right)

Question 541

Multiple Choice

Use the summation properties to evaluate the series. The following rules may be needed: i=1ni=n(n+1) 2;i=1ni2=n(n+1) (2n+1) 6;i=1ni3=n2(n+1) 24\sum _ { i = 1 } ^ { n } i = \frac { n ( n + 1 ) } { 2 } ; \quad \sum _ { i = 1 } ^ { n } i ^ { 2 } = \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 } ; \quad \sum _ { i = 1 } ^ { n } i ^ { 3 } = \frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 4 }
- i=14(4i2+3i1) \sum _ { i = 1 } ^ { 4 } \left( 4 i ^ { 2 } + 3 i - 1 \right)


A) 146
B) 149
C) 154
D) 126

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions