Solved

It Can Be Shown That an Ellipse with Foci (c,0)( c , 0 )

Question 533

Multiple Choice

It can be shown that an ellipse with foci (c,0) ( c , 0 ) and (c,0) ( - c , 0 ) where the sum of the distances from any point ( x,y) x , y ) of the ellipse to the two foci is 2a2 a has equation x2a2+y2a2c2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { a ^ { 2 } - c ^ { 2 } } = 1 . Use this result to find an equation of an ellipse with foci (3,0) ( 3,0 ) and (3,0) ( - 3,0 ) , where the sum of the distances from any point of the ellipse to the two foci is 10 .


A) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1
B) x23+y2100=1\frac { x ^ { 2 } } { - 3 } + \frac { y ^ { 2 } } { 100 } = 1
C) x2+y2=100x ^ { 2 } + y ^ { 2 } = 100
D) x23+y222=1\frac { x ^ { 2 } } { - 3 } + \frac { y ^ { 2 } } { 22 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions