Solved

Find the Center, Foci, and Asymptotes of the Hyperbola x2y216=1x ^ { 2 } - \frac { y ^ { 2 } } { 16 } = 1

Question 311

Multiple Choice

Find the center, foci, and asymptotes of the hyperbola.
- x2y216=1x ^ { 2 } - \frac { y ^ { 2 } } { 16 } = 1


A) C:(0,0) ;F:(4,0) ,(4,0) ;A:y=14x,y=14x\mathrm { C } : ( 0,0 ) ; \mathrm { F } : ( 4,0 ) , ( - 4,0 ) ; \mathrm { A } : \mathrm { y } = \frac { 1 } { 4 } \mathrm { x } , \mathrm { y } = - \frac { 1 } { 4 } \mathrm { x }
B) C: (0,0) ;F:(17,0) ,(17,0) ;A:y=4x,y=4x( 0,0 ) ; \mathrm { F } : ( \sqrt { 17 } , 0 ) , ( - \sqrt { 17 } , 0 ) ; \mathrm { A } : \mathrm { y } = 4 \mathrm { x } , \mathrm { y } = - 4 \mathrm { x }
C) C: (0,0) ;F:(17,0) ,(17,0) ;A:y=15x,y=15x( 0,0 ) ; \mathrm { F } : ( \sqrt { 17 } , 0 ) , ( - \sqrt { 17 } , 0 ) ; \mathrm { A } : \mathrm { y } = \frac { 1 } { 5 } \mathrm { x } , \mathrm { y } = - \frac { 1 } { 5 } \mathrm { x }
D) C: (4,0) ;F:(17,0) ,(17,0) ;A:y=14x,y=14x( 4,0 ) ; F : ( \sqrt { 17 } , 0 ) , ( - \sqrt { 17 } , 0 ) ; A : y = \frac { 1 } { 4 } x , y = - \frac { 1 } { 4 } x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions