Solved

It Can Be Shown That a Hyperbola with Center at the Origin

Question 87

Multiple Choice

It can be shown that a hyperbola with center at the origin, foci at F(c,0) \mathrm { F } ^ { \prime } ( - \mathrm { c } , 0 ) and F(c,0) \mathrm { F } ( \mathrm { c } , 0 ) , and equation d(P,F) d(P,F) =2ad \left( P , F ^ { \prime } \right) - d ( P , F ) = 2 a has equation x2a2y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 . Use this result to find an equation of a hyperbola with center at the origin, foci at (8,0) ( - 8,0 ) and (8,0) ( 8,0 ) , and absolute value of the distances from any point of the hyperbola to the two foci equal to 8 .


A) x264y28=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 8 } = 1
B) x2y2=8x ^ { 2 } - y ^ { 2 } = 8
C) x216y248=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 48 } = 1
D) x264y280=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 80 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions