Solved

When a Satellite Is near Earth, Its Orbital Trajectory May VV

Question 239

Multiple Choice

When a satellite is near Earth, its orbital trajectory may trace out a hyperbola, a parabola, or an ellipse. The type of trajectory depends on the satellite's velocity VV in meters per second. It will be hyperbolic if V>kDV > \frac { k } { \sqrt { D } } , parabolic if V=kD\mathrm { V } = \frac { \mathrm { k } } { \sqrt { \mathrm { D } } } , and elliptical if V<kD\mathrm { V } < \frac { \mathrm { k } } { \sqrt { \mathrm { D } } } , where k=2.82×107\mathrm { k } = 2.82 \times 10 ^ { 7 } is a constant and D\mathrm { D } is the distance in meters from the satellite to the center of Earth. Solve the problem.
-If a satellite is scheduled to leave Earth's gravitational influence, its velocity must be increased so that its trajectory changes from elliptical to hyperbolic. Determine the minimum increase in velocity necessary for a
Satellite traveling at a velocity of 5696 meters per second to escape Earth's gravitational influence when D=167×106 m.\mathrm { D } = 167 \times 10 ^ { 6 } \mathrm {~m} .


A) 3514 m- 3514 \mathrm {~m} per sec
B) 5765 m5765 \mathrm {~m} per sec
C) 7878 m7878 \mathrm {~m} per sec
D) 5627 m5627 \mathrm {~m} per sec

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions