Solved

Use the Gauss-Jordan Method to Solve the System of Equations xy+2z+w=1y+z=4zw=1\begin{array} { l } x - y + 2 z + w = 1 \\y + z = 4 \\z - w = 1\end{array}

Question 310

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last variable be the arbitrary variable.
xy+2z+w=1y+z=4zw=1\begin{array} { l } x - y + 2 z + w = 1 \\y + z = 4 \\z - w = 1\end{array}


A) {(2,3,1,w) }\{ ( 2,3,1 , w ) \}
B) {(2,2,2,1) }\{ ( - 2,2,2,1 ) \}
C) ϕ\phi
D) {(24w,3w,1+w,w) }\{ ( 2 - 4 w , 3 - w , 1 + w , w ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions