Solved

Use the Gauss-Jordan Method to Solve the System of Equations x+3y2zw=104x+y+z+2w=103xy3z2w=7xy3z2w=3\begin{array} { l } x + 3 y - 2 z - w = 10 \\4 x + y + z + 2 w = 10 \\- 3 x - y - 3 z - 2 w = - 7 \\x - y - 3 z - 2 w = - 3\end{array}

Question 390

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last variable be the arbitrary variable.
x+3y2zw=104x+y+z+2w=103xy3z2w=7xy3z2w=3\begin{array} { l } x + 3 y - 2 z - w = 10 \\4 x + y + z + 2 w = 10 \\- 3 x - y - 3 z - 2 w = - 7 \\x - y - 3 z - 2 w = - 3\end{array}


A) {(0,5,5,4) }\{ ( 0,5 , - 5,4 ) \}
B) {(10,10,7,3) }\{ ( 10,10 , - 7 , - 3 ) \}
C) {(1+w,32w,1+2w,w) }\{ ( 1 + w , 3 - 2 w , - 1 + 2 w , w ) \}
D) {(1,3,1,2) }\{ ( 1,3 , - 1,2 ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions