Solved

Solve the System for X and Y Using Cramer's Rule 1ax+1by=abx+y=a\begin{array} { l } \frac { 1 } { a } x + \frac { 1 } { b } y = a b \\x + y = a\end{array}

Question 126

Multiple Choice

Solve the system for x and y using Cramer's rule. Assume a and b are nonzero constants
1ax+1by=abx+y=a\begin{array} { l } \frac { 1 } { a } x + \frac { 1 } { b } y = a b \\x + y = a\end{array}


A) {(ab(1ab) ,a2(b21) ) }\left\{ \left( a b ( 1 - a b ) , a ^ { 2 } \left( b ^ { 2 } - 1 \right) \right) \right\}
B) {[a(ba) (b21) ab2,(ba) (1ab) ab) }\left\{ \left[ \frac { a ( b - a ) \left( b ^ { 2 } - 1 \right) } { a b ^ { 2 } } , \frac { ( b - a ) ( 1 - a b ) } { a b } \right) \right\}
C) {a2(b21) ba,ab(1ab) ba) }\left. \left\{ \frac { a ^ { 2 } \left( b ^ { 2 } - 1 \right) } { b - a } , \frac { a b ( 1 - a b ) } { b - a } \right) \right\}
D) {(a2b(b21) ba,ab(1ab) ba) }\left\{ \left( \frac { a ^ { 2 } b \left( b ^ { 2 } - 1 \right) } { b - a } , \frac { a b ( 1 - a b ) } { b - a } \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions