Solved

Find the Matrix Product When Possible A=[010011101]A = \left[ \begin{array} { r r r } 0 & - 1 & 0 \\ 0 & 1 & 1 \\ - 1 & 0 & - 1 \end{array} \right]

Question 134

Multiple Choice

Find the matrix product when possible.
-Given A=[010011101]A = \left[ \begin{array} { r r r } 0 & - 1 & 0 \\ 0 & 1 & 1 \\ - 1 & 0 & - 1 \end{array} \right] and B=[110010110]B = \left[ \begin{array} { r r r } - 1 & 1 & 0 \\ 0 & - 1 & 0 \\ 1 & 1 & 0 \end{array} \right] , find ABA B and BAB A .


A)
AB=[010010100];BA=[010010100]\mathrm { AB } = \left[ \begin{array} { r r r } 0 & - 1 & 0 \\ 0 & - 1 & 0 \\ - 1 & 0 & 0 \end{array} \right] ; \mathrm { BA } = \left[ \begin{array} { r r r } 0 & - 1 & 0 \\ 0 & - 1 & 0 \\ - 1 & 0 & 0 \end{array} \right]
B)
AB=[021011001];BA=[010100020]\mathrm { AB } = \left[ \begin{array} { c c c } 0 & 2 & 1 \\ 0 & - 1 & - 1 \\ 0 & 0 & 1 \end{array} \right] ; \mathrm { BA } = \left[ \begin{array} { c c c } 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & - 2 & 0 \end{array} \right]
C)
AB=[010120020];BA=[001011021]A B = \left[ \begin{array} { r r r } 0 & - 1 & 0 \\ 1 & 2 & 0 \\ 0 & - 2 & 0 \end{array} \right] ; B A = \left[ \begin{array} { c c c } 0 & 0 & - 1 \\ 0 & 1 & 1 \\ 0 & - 2 & - 1 \end{array} \right]
D)
AB=[010100020];BA=[021011001]\mathrm { AB } = \left[ \begin{array} { r r r } 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & - 2 & 0 \end{array} \right] ; \mathrm { BA } = \left[ \begin{array} { c c c } 0 & 2 & 1 \\ 0 & - 1 & - 1 \\ 0 & 0 & 1 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions