Solved

Give the Domain and Range f(x)=log2x+4f(x)=\log _{2} x+4 A) Domain (,)( \infty , \infty )

Question 361

Multiple Choice

Give the domain and range.
- f(x) =log2x+4f(x) =\log _{2} x+4
 Give the domain and range. - f(x) =\log _{2} x+4    A)  domain:  ( \infty , \infty )  ; range:  ( 4 , \infty )     B)  domain:  ( 0 , \infty )  ; range:  ( \infty , \infty )     C)  domain:  ( - 4 , \infty )  ; range:  ( \infty , 0 )     D)  domain:  ( \infty , 0 )  ; range:  ( \infty , \infty )


A) domain: (,) ( \infty , \infty ) ; range: (4,) ( 4 , \infty )
 Give the domain and range. - f(x) =\log _{2} x+4    A)  domain:  ( \infty , \infty )  ; range:  ( 4 , \infty )     B)  domain:  ( 0 , \infty )  ; range:  ( \infty , \infty )     C)  domain:  ( - 4 , \infty )  ; range:  ( \infty , 0 )     D)  domain:  ( \infty , 0 )  ; range:  ( \infty , \infty )
B) domain: (0,) ( 0 , \infty ) ; range: (,) ( \infty , \infty )
 Give the domain and range. - f(x) =\log _{2} x+4    A)  domain:  ( \infty , \infty )  ; range:  ( 4 , \infty )     B)  domain:  ( 0 , \infty )  ; range:  ( \infty , \infty )     C)  domain:  ( - 4 , \infty )  ; range:  ( \infty , 0 )     D)  domain:  ( \infty , 0 )  ; range:  ( \infty , \infty )
C) domain: (4,) ( - 4 , \infty ) ; range: (,0) ( \infty , 0 )
 Give the domain and range. - f(x) =\log _{2} x+4    A)  domain:  ( \infty , \infty )  ; range:  ( 4 , \infty )     B)  domain:  ( 0 , \infty )  ; range:  ( \infty , \infty )     C)  domain:  ( - 4 , \infty )  ; range:  ( \infty , 0 )     D)  domain:  ( \infty , 0 )  ; range:  ( \infty , \infty )
D) domain: (,0) ( \infty , 0 ) ; range: (,) ( \infty , \infty )
 Give the domain and range. - f(x) =\log _{2} x+4    A)  domain:  ( \infty , \infty )  ; range:  ( 4 , \infty )     B)  domain:  ( 0 , \infty )  ; range:  ( \infty , \infty )     C)  domain:  ( - 4 , \infty )  ; range:  ( \infty , 0 )     D)  domain:  ( \infty , 0 )  ; range:  ( \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions