Solved

Use the Properties of Logarithms to Rewrite the Expression logb4x8z4\log b \sqrt { \frac { 4 x ^ { 8 } } { z ^ { 4 } } }

Question 20

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers.
- logb4x8z4\log b \sqrt { \frac { 4 x ^ { 8 } } { z ^ { 4 } } }


A) logb24logbx2logbz\log _ { b } 2 \cdot 4 \log _ { b } x - 2 \log _ { b } z
B) logb4+logbx8logbz4\sqrt { \log _ { \mathrm { b } } 4 } + \sqrt { \log _ { \mathrm { b } } \mathrm { x } ^ { 8 } } - \sqrt { \log _ { \mathrm { b } } \mathrm { z } ^ { 4 } }
C) logb2+4logbx2logbz\log _ { b } 2 + 4 \log _ { b } x - 2 \log _ { b } z
D) (logb2++4logbx) ÷2logbz\left( \log _ { b } 2 + + 4 \log _ { b } x \right) \div 2 \log _ { b } z

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions