Solved

Given That f(x)=ex1+3f ( x ) = e ^ { x - 1 } + 3

Question 104

Multiple Choice

Given that f(x) =ex1+3f ( x ) = e ^ { x - 1 } + 3 , find f1(x) f ^ { - 1 } ( x ) and give the domain and range of f1(x) f ^ { - 1 } ( x ) .


A) f1(x) =ln(x1) +3\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \ln ( \mathrm { x } - 1 ) + 3 , domain =(,) = ( - \infty , \infty ) , range =(,) = ( - \infty , \infty )
B) f1(x) =ln(x1) +3\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \ln ( x - 1 ) + 3 , domain =(3,) = ( 3 , \infty ) , range =(,) = ( - \infty , \infty )
C) f1(x) =ln(x3) +1\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \ln ( x - 3 ) + 1 , domain =(0,) = ( 0 , \infty ) , range =(0,) = ( 0 , \infty )
D) f1(x) =ln(x3) +1\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \ln ( \mathrm { x } - 3 ) + 1 , domain =(3,) = ( 3 , \infty ) , range =(,) = ( - \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions