Solved

Find a Polynomial Function F(x) of Least Possible Degree Having f(x)=13(x+2)(x3)2f ( x ) = \frac { 1 } { 3 } ( x + 2 ) ( x - 3 ) ^ { 2 }

Question 476

Multiple Choice

Find a polynomial function f(x) of least possible degree having the graph shown.
- Find a polynomial function f(x)  of least possible degree having the graph shown. -  A)   f ( x )  = \frac { 1 } { 3 } ( x + 2 )  ( x - 3 )  ^ { 2 }  B)   f ( x )  = \frac { 1 } { 3 } ( x - 2 )  ( x + 3 )   C)   f ( x )  = \frac { 1 } { 3 } ( x - 2 )  ( x + 3 )  ^ { 2 }  D)   f ( x )  = \frac { 1 } { 3 } ( x + 2 )  ( x - 3 )


A) f(x) =13(x+2) (x3) 2f ( x ) = \frac { 1 } { 3 } ( x + 2 ) ( x - 3 ) ^ { 2 }
B) f(x) =13(x2) (x+3) f ( x ) = \frac { 1 } { 3 } ( x - 2 ) ( x + 3 )
C) f(x) =13(x2) (x+3) 2f ( x ) = \frac { 1 } { 3 } ( x - 2 ) ( x + 3 ) ^ { 2 }
D) f(x) =13(x+2) (x3) f ( x ) = \frac { 1 } { 3 } ( x + 2 ) ( x - 3 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions