Solved

Find an Equation for the Rational Function Graph f(x)=2(x2)(x6)(x4)(x6)f ( x ) = \frac { 2 ( x - 2 ) ( x - 6 ) } { ( x - 4 ) ( x - 6 ) }

Question 386

Multiple Choice

Find an equation for the rational function graph.
- Find an equation for the rational function graph. -  A)   f ( x )  = \frac { 2 ( x - 2 )  ( x - 6 )  } { ( x - 4 )  ( x - 6 )  }  B)   f ( x )  = \frac { 2 ( x + 4 )  ( x + 6 )  } { ( x + 2 )  ( x + 6 )  }  C)   f ( x )  = \frac { 2 ( x - 4 )  ( x - 6 )  } { ( x - 2 )  ( x - 6 )  }  D)   f ( x )  = \frac { 2 ( x - 4 )  } { x - 2 }


A) f(x) =2(x2) (x6) (x4) (x6) f ( x ) = \frac { 2 ( x - 2 ) ( x - 6 ) } { ( x - 4 ) ( x - 6 ) }
B) f(x) =2(x+4) (x+6) (x+2) (x+6) f ( x ) = \frac { 2 ( x + 4 ) ( x + 6 ) } { ( x + 2 ) ( x + 6 ) }
C) f(x) =2(x4) (x6) (x2) (x6) f ( x ) = \frac { 2 ( x - 4 ) ( x - 6 ) } { ( x - 2 ) ( x - 6 ) }
D) f(x) =2(x4) x2f ( x ) = \frac { 2 ( x - 4 ) } { x - 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions