Solved

Give a Rule for the Piecewise-Defined Function B) f(x)={6 if x<21 if x2;f ( x ) = \left\{ \begin{array} { l l } - 6 & \text { if } x < - 2 \\ - 1 & \text { if } x \geq - 2 \end{array} ; \right.

Question 421

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   \text {  }  f(x) =\left\{\begin{array}{ll} -6 & \text { if } x \leq-2 \\ -1 & \text { if } x>-2 \end{array} ; \text { Domain: }(\infty, \infty)  \text {, Range: }\{-6,-1\}\right.  B)   f ( x )  = \left\{ \begin{array} { l l } - 6 & \text { if } x < - 2 \\ - 1 & \text { if } x \geq - 2 \end{array} ; \right.  Domain:  \{ - 6 , - 1 \} , Range:  ( x , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } - 6 & \text { if } x \leq - 2 \\ - 1 & \text { if } x > - 2 \end{array} ; \right.  Domain:  \{ - 6 , - 1 \} , Range:  ( \infty , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } - 6 & \text { if } x < - 2 \\ - 1 & \text { if } x \geq - 2 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  \{ - 6 , - 1 \}


A)  f(x) ={6 if x21 if x>2; Domain: (,) , Range: {6,1}\text { } f(x) =\left\{\begin{array}{ll}-6 & \text { if } x \leq-2 \\-1 & \text { if } x>-2\end{array} ; \text { Domain: }(\infty, \infty) \text {, Range: }\{-6,-1\}\right.
B) f(x) ={6 if x<21 if x2;f ( x ) = \left\{ \begin{array} { l l } - 6 & \text { if } x < - 2 \\ - 1 & \text { if } x \geq - 2 \end{array} ; \right. Domain: {6,1}\{ - 6 , - 1 \} , Range: (x,) ( x , \infty )
C) f(x) ={6 if x21 if x>2;f ( x ) = \left\{ \begin{array} { l l } - 6 & \text { if } x \leq - 2 \\ - 1 & \text { if } x > - 2 \end{array} ; \right. Domain: {6,1}\{ - 6 , - 1 \} , Range: (,) ( \infty , \infty )
D) f(x) ={6 if x<21 if x2;f ( x ) = \left\{ \begin{array} { l l } - 6 & \text { if } x < - 2 \\ - 1 & \text { if } x \geq - 2 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: {6,1}\{ - 6 , - 1 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions