Solved

Give a Rule for the Piecewise-Defined Function f(x)={5 if x0x if x>0;f ( x ) = \left\{ \begin{array} { l l } 5 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} ; \right.

Question 231

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } 5 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , 0 )  \cup \{ 5 \}  B)   f ( x )  = \left\{ \begin{array} { l } 5 \text { if } x < 0 \\ x \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( \infty , 0 ] \cup ( 5 )  , Range:  ( \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } 5 & \text { if } x < 0 \\ - 5 x & \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( \infty , 0 )  \cup \{ 5 \} , Range:  ( \infty , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } 5 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , 0 ] \cup \{ 5 \}


A) f(x) ={5 if x0x if x>0;f ( x ) = \left\{ \begin{array} { l l } 5 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: (,0) {5}( \infty , 0 ) \cup \{ 5 \}
B) f(x) ={5 if x<0x if x0;f ( x ) = \left\{ \begin{array} { l } 5 \text { if } x < 0 \\ x \text { if } x \geq 0 \end{array} ; \right. Domain: (,0](5) ( \infty , 0 ] \cup ( 5 ) , Range: (,) ( \infty , \infty )
C) f(x) ={5 if x<05x if x0;f ( x ) = \left\{ \begin{array} { l l } 5 & \text { if } x < 0 \\ - 5 x & \text { if } x \geq 0 \end{array} ; \right. Domain: (,0) {5}( \infty , 0 ) \cup \{ 5 \} , Range: (,) ( \infty , \infty )
D) f(x) ={5 if x<0x if x0;f ( x ) = \left\{ \begin{array} { l l } 5 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: (,0]{5}( \infty , 0 ] \cup \{ 5 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions