Solved

Give a Rule for the Piecewise-Defined Function f(x)={2x if x1x+1 if x>1;f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq 1 \\ x + 1 & \text { if } x > 1 \end{array} ; \right.

Question 329

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq 1 \\ x + 1 & \text { if } x > 1 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , \infty )   B)   f ( x )  = \left\{ \begin{array} { l l } 2 x & \text { if } x \leq 1 \\ x + 1 & \text { if } x > 1 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq 1 \\ x + 2 & \text { if } x > 1 \end{array} ; \right.  Domain:  ( \infty , 2 )  \cup ( 2 , \infty )  , Range:  ( \infty , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } - x & \text { if } x \leq 1 \\ 2 x + 1 & \text { if } x > 1 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , 2 )  \cup ( 2 , \infty )


A) f(x) ={2x if x1x+1 if x>1;f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq 1 \\ x + 1 & \text { if } x > 1 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: (,) ( \infty , \infty )
B) f(x) ={2x if x1x+1 if x>1;f ( x ) = \left\{ \begin{array} { l l } 2 x & \text { if } x \leq 1 \\ x + 1 & \text { if } x > 1 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: (,) ( \infty , \infty )
C) f(x) ={2x if x1x+2 if x>1;f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq 1 \\ x + 2 & \text { if } x > 1 \end{array} ; \right. Domain: (,2) (2,) ( \infty , 2 ) \cup ( 2 , \infty ) , Range: (,) ( \infty , \infty )
D) f(x) ={x if x12x+1 if x>1;f ( x ) = \left\{ \begin{array} { l l } - x & \text { if } x \leq 1 \\ 2 x + 1 & \text { if } x > 1 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: (,2) (2,) ( \infty , 2 ) \cup ( 2 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions