Solved

Consider the Function H as Defined (fg)(x)=h(x)( f \circ g ) ( x ) = h ( x )

Question 145

Multiple Choice

Consider the function h as defined. Find functions f and g so tha (fg) (x) =h(x) ( f \circ g ) ( x ) = h ( x )
- h(x) =10x2+10h ( x ) = \frac { 10 } { x ^ { 2 } } + 10


A) f(x) =10x2,g(x) =10f ( x ) = \frac { 10 } { x ^ { 2 } } , g ( x ) = 10
B) f(x) =x+10,g(x) =10x2f ( x ) = x + 10 , g ( x ) = \frac { 10 } { x ^ { 2 } }
C) f(x) =x,g(x) =10x+10f ( x ) = x , g ( x ) = \frac { 10 } { x } + 10
D) f(x) =1x,g(x) =10x+10f ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 10 } { x } + 10

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions