Solved

Provide the Requested Proof m(D)=m(C)\mathrm { m } ( \angle \mathrm { D } ) = \mathrm { m } ( \angle \mathrm { C } )

Question 104

Essay

Provide the requested proof.
-In the trapezoid below, m(D)=m(C)\mathrm { m } ( \angle \mathrm { D } ) = \mathrm { m } ( \angle \mathrm { C } ) and AD=BC\mathrm { AD } = \mathrm { BC } . If M\mathrm { M } is the midpoint of CD\overline { \mathrm { CD } } , prove that m(MAB)=m(MBA)\mathrm { m } ( \angle \mathrm { MAB } ) = \mathrm { m } ( \angle \mathrm { MBA } ) .
 Provide the requested proof. -In the trapezoid below,  \mathrm { m } ( \angle \mathrm { D } ) = \mathrm { m } ( \angle \mathrm { C } )  and  \mathrm { AD } = \mathrm { BC } . If  \mathrm { M }  is the midpoint of  \overline { \mathrm { CD } } , prove that  \mathrm { m } ( \angle \mathrm { MAB } ) = \mathrm { m } ( \angle \mathrm { MBA } ) .

Correct Answer:

verifed

Verified

Answers will vary. A sample co...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions