Solved

Use the Properties of Parallel Lines to Solve the Problem pq\mathrm { p } \| \mathrm { q }

Question 64

Multiple Choice

Use the properties of parallel lines to solve the problem.
-If pq\mathrm { p } \| \mathrm { q } and m(8) =40\mathrm { m } ( \angle 8 ) = 40 ^ { \circ } , what are the measures of the other angles?
 Use the properties of parallel lines to solve the problem. -If  \mathrm { p } \| \mathrm { q }  and  \mathrm { m } ( \angle 8 )  = 40 ^ { \circ } , what are the measures of the other angles?    A)   \mathrm { m } ( \angle 5 )  = \mathrm { m } ( \angle 6 )  = \mathrm { m } ( \angle 7 )  = 40 ^ { \circ } , \mathrm { m } ( \angle 1 )  = \mathrm { m } ( \angle 2 )  = \mathrm { m } ( \angle 3 )  = \mathrm { m } ( \angle 4 )  = 140 ^ { \circ }   B)   \mathrm { m } ( \angle 2 )  = \mathrm { m } ( \angle 4 )  = \mathrm { m } ( \angle 6 )  = 40 ^ { \circ } , \mathrm { m } ( \angle 1 )  = \mathrm { m } ( \angle 3 )  = \mathrm { m } ( \angle 5 )  = \mathrm { m } ( \angle 7 )  = 150 ^ { \circ }   C)   \mathrm { m } ( \angle 2 )  = \mathrm { m } ( \angle 4 )  = \mathrm { m } ( \angle 6 )  = 40 ^ { \circ } , \mathrm { m } ( \angle 1 )  = \mathrm { m } ( \angle 3 )  = \mathrm { m } ( \angle 5 )  = \mathrm { m } ( \angle 7 )  = 50 ^ { \circ }   D)   \mathrm { m } ( \angle 2 )  = \mathrm { m } ( \angle 4 )  = \mathrm { m } ( \angle 6 )  = 40 ^ { \circ } , \mathrm { m } ( \angle 1 )  = \mathrm { m } ( \angle 3 )  = \mathrm { m } ( \angle 5 )  = \mathrm { m } ( \angle 7 )  = 140 ^ { \circ }


A) m(5) =m(6) =m(7) =40,m(1) =m(2) =m(3) =m(4) =140\mathrm { m } ( \angle 5 ) = \mathrm { m } ( \angle 6 ) = \mathrm { m } ( \angle 7 ) = 40 ^ { \circ } , \mathrm { m } ( \angle 1 ) = \mathrm { m } ( \angle 2 ) = \mathrm { m } ( \angle 3 ) = \mathrm { m } ( \angle 4 ) = 140 ^ { \circ }

B) m(2) =m(4) =m(6) =40,m(1) =m(3) =m(5) =m(7) =150\mathrm { m } ( \angle 2 ) = \mathrm { m } ( \angle 4 ) = \mathrm { m } ( \angle 6 ) = 40 ^ { \circ } , \mathrm { m } ( \angle 1 ) = \mathrm { m } ( \angle 3 ) = \mathrm { m } ( \angle 5 ) = \mathrm { m } ( \angle 7 ) = 150 ^ { \circ }

C) m(2) =m(4) =m(6) =40,m(1) =m(3) =m(5) =m(7) =50\mathrm { m } ( \angle 2 ) = \mathrm { m } ( \angle 4 ) = \mathrm { m } ( \angle 6 ) = 40 ^ { \circ } , \mathrm { m } ( \angle 1 ) = \mathrm { m } ( \angle 3 ) = \mathrm { m } ( \angle 5 ) = \mathrm { m } ( \angle 7 ) = 50 ^ { \circ }

D) m(2) =m(4) =m(6) =40,m(1) =m(3) =m(5) =m(7) =140\mathrm { m } ( \angle 2 ) = \mathrm { m } ( \angle 4 ) = \mathrm { m } ( \angle 6 ) = 40 ^ { \circ } , \mathrm { m } ( \angle 1 ) = \mathrm { m } ( \angle 3 ) = \mathrm { m } ( \angle 5 ) = \mathrm { m } ( \angle 7 ) = 140 ^ { \circ }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions