Solved

In Predicting the Growth of the Volume of a Small volume^3=2.34+4.56\sqrt [ 3 ] { \widehat { volume} } = 2.34 + 4.56

Question 2

Multiple Choice

In predicting the growth of the volume of a small bay by measuring the height of the water at a dock, a researcher is using a model of volume^3=2.34+4.56\sqrt [ 3 ] { \widehat { volume} } = 2.34 + 4.56 (height) where height is measured in m\mathrm { m } and volume cubic miles. If the height rises to 3.45 m3.45 \mathrm {~m} , what is the predicted volume?


A) 2.62 m32.62 \mathrm {~m} ^ { 3 }
B) 1.2×1012 m31.2 \times 10 ^ { 12 } \mathrm {~m} ^ { 3 }
C) 5902 m35902 \mathrm {~m} ^ { 3 }
D) 7×107 m37 \times 10 ^ { 7 } \mathrm {~m} ^ { 3 }
E) 18.1 m318.1 \mathrm {~m} ^ { 3 }

Correct Answer:

verifed

Verified

Related Questions