Solved

Solve the Problem Relating to the Fibonacci Sequence (1+52)n(152)n5\frac { \left( \frac { 1 + \sqrt { 5 } } { 2 } \right) ^ { n } - \left( \frac { 1 - \sqrt { 5 } } { 2 } \right) ^ { n } } { \sqrt { 5 } }

Question 99

Multiple Choice

Solve the problem relating to the Fibonacci sequence.
-According to the Binet form, the nth Fibonacci number is given by (1+52) n(152) n5\frac { \left( \frac { 1 + \sqrt { 5 } } { 2 } \right) ^ { n } - \left( \frac { 1 - \sqrt { 5 } } { 2 } \right) ^ { n } } { \sqrt { 5 } } Use this Binet form to find the 28th Fibonacci number.


A) 317,812
B) 317,810
C) 317,811
D) 317,813

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions