Solved

Make a Probability Distribution for the Given Set of Events (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)( 1,1 ) \quad ( 1,2 ) \quad ( 1,3 ) \quad ( 1,4 ) \quad ( 1,5 ) \quad ( 1,6 )

Question 41

Multiple Choice

Make a probability distribution for the given set of events.
-When two balanced dice are rolled, 36 equally likely outcomes are possible as shown below. (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) ( 1,1 ) \quad ( 1,2 ) \quad ( 1,3 ) \quad ( 1,4 ) \quad ( 1,5 ) \quad ( 1,6 )
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) ( 2,1 ) \quad ( 2,2 ) \quad ( 2,3 ) \quad ( 2,4 ) \quad ( 2,5 ) \quad ( 2,6 )
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) ( 3,1 ) \quad ( 3,2 ) \quad ( 3,3 ) \quad ( 3,4 ) \quad ( 3,5 ) \quad ( 3,6 )
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) ( 4,1 ) \quad ( 4,2 ) \quad ( 4,3 ) \quad ( 4,4 ) \quad ( 4,5 ) \quad ( 4,6 )
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) ( 5,1 ) \quad ( 5,2 ) \quad ( 5,3 ) \quad ( 5,4 ) \quad ( 5,5 ) \quad ( 5,6 )
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) ( 6,1 ) \quad ( 6,2 ) ( 6,3 ) \quad ( 6,4 ) \quad ( 6,5 ) \quad ( 6,6 ) Let X denote the smaller of the two numbers. If both dice come up the same number, then X equals that common value. Find the probability distribution of X. Leave your probabilities in fraction
Form.


A)
xP(X=x) 15/1821/437/3645/3651/961/36\begin{array}{r|r}x & P(X=x) \\\hline 1 & 5 / 18 \\2 & 1 / 4 \\3 & 7 / 36 \\4 & 5 / 36 \\5 & 1 / 9 \\6 & 1 / 36\end{array}

B)
xP(X=x) 111/3621/437/3645/3651/1261/36\begin{array}{r|r}x & P(X=x) \\\hline 1 & 11 / 36 \\2 & 1 / 4 \\3 & 7 / 36 \\4 & 5 / 36 \\5 & 1 / 12 \\6 & 1 / 36\end{array}
C)
xP(X=x) 11/621/631/641/651/661/6\begin{array}{r|r}x & P(X=x) \\\hline 1 & 1 / 6 \\2 & 1 / 6 \\3 & 1 / 6 \\4 & 1 / 6 \\5 & 1 / 6 \\6 & 1 / 6\end{array}

D)
xP(X=x) 15/1822/931/641/951/1860\begin{array}{r|r}x & P(X=x) \\\hline 1 & 5 / 18 \\2 & 2 / 9 \\3 & 1 / 6 \\4 & 1 / 9 \\5 & 1 / 18 \\6 & 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions