Solved

Identify Each of the Variables in the Binomial Probability Formula P(x)=n!(nx)!x!px(1p)nxP ( x ) = \frac { n ! } { ( n - x ) ! x ! } \cdot p ^ { x } \cdot ( 1 - p ) ^ { n - x }

Question 115

Essay

Identify each of the variables in the Binomial Probability Formula.
P(x)=n!(nx)!x!px(1p)nxP ( x ) = \frac { n ! } { ( n - x ) ! x ! } \cdot p ^ { x } \cdot ( 1 - p ) ^ { n - x } Also, explain what the fraction n!(nx)!x!\frac { n ! } { ( n - x ) ! x ! } computes.

Correct Answer:

verifed

Verified

n is the fixed number of trials, x is th...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions