Solved

A Hypothesis Test for Two Population Standard Deviations Is to Be

Question 17

Multiple Choice

A hypothesis test for two population standard deviations is to be performed. Independent random samples of sizes n1\mathrm { n } _ { 1 } and n2\mathrm { n } _ { 2 } are drawn from the two populations. The variable under consideration is normally distributed on each of the two populations. The test statistic is s12/s22\mathrm { s } _ { 1 } ^ { 2 } / \mathrm { s } _ { 2 } ^ { 2 } . If the null hypothesis, H0:σ1=σ2\mathrm { H } _ { 0 } : \sigma _ { 1 } = \sigma _ { 2 } , is true, what is the distribution of this test statistic?


A) χ2\chi ^ { 2 } -distribution with df=n1+n21\mathrm { df } = \mathrm { n } _ { 1 } + \mathrm { n } _ { 2 } - 1
B) F\mathrm { F } -distribution with df =(n1,n2) = \left( \mathrm { n } _ { 1 } , \mathrm { n } _ { 2 } \right)
C) F-distribution with df=(n21,n11) \mathrm { df } = \left( \mathrm { n } _ { 2 } - 1 , \mathrm { n } _ { 1 } - 1 \right)
D) FF -distribution with df=(n11,n21) \mathrm { df } = \left( \mathrm { n } _ { 1 } - 1 , \mathrm { n } _ { 2 } - 1 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions