Solved

Find the Vertex, Focus, and Directrix of the Parabola (y+2)2=8(x+3)(y+2)^{2}=8(x+3) A)
Vertex

Question 171

Multiple Choice

Find the vertex, focus, and directrix of the parabola. Graph the equation.
- (y+2) 2=8(x+3) (y+2) ^{2}=8(x+3)
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2) ^{2}=8(x+3)      A)  vertex:   (2,3)    focus:   (4,3)    directrix:   x=0       B)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-1,-2)  \\ \text { directrix: } x=-5 \end{array}     C)  vertex:   (3,2)    focus:   (3,4)    directrix:   y=0      D)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } y=-4 \end{array}
A)
vertex: (2,3) (2,3)
focus: (4,3) (4,3)
directrix: x=0 x=0
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2) ^{2}=8(x+3)      A)  vertex:   (2,3)    focus:   (4,3)    directrix:   x=0       B)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-1,-2)  \\ \text { directrix: } x=-5 \end{array}     C)  vertex:   (3,2)    focus:   (3,4)    directrix:   y=0      D)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } y=-4 \end{array}


B)
 vertex: (3,2)  focus: (1,2)  directrix: x=5\begin{array}{l}\text { vertex: }(-3,-2) \\\text { focus: }(-1,-2) \\\text { directrix: } x=-5\end{array}
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2) ^{2}=8(x+3)      A)  vertex:   (2,3)    focus:   (4,3)    directrix:   x=0       B)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-1,-2)  \\ \text { directrix: } x=-5 \end{array}     C)  vertex:   (3,2)    focus:   (3,4)    directrix:   y=0      D)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } y=-4 \end{array}

C)
vertex: (3,2) (3,2)
focus: (3,4) (3,4)
directrix: y=0 y=0
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2) ^{2}=8(x+3)      A)  vertex:   (2,3)    focus:   (4,3)    directrix:   x=0       B)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-1,-2)  \\ \text { directrix: } x=-5 \end{array}     C)  vertex:   (3,2)    focus:   (3,4)    directrix:   y=0      D)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } y=-4 \end{array}

D)
 vertex: (3,2)  focus: (3,0)  directrix: y=4\begin{array}{l}\text { vertex: }(-3,-2) \\\text { focus: }(-3,0) \\\text { directrix: } y=-4\end{array}
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2) ^{2}=8(x+3)      A)  vertex:   (2,3)    focus:   (4,3)    directrix:   x=0       B)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-1,-2)  \\ \text { directrix: } x=-5 \end{array}     C)  vertex:   (3,2)    focus:   (3,4)    directrix:   y=0      D)   \begin{array}{l} \text { vertex: }(-3,-2)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } y=-4 \end{array}


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions