Solved

Find the Vertex, Focus, and Directrix of the Parabola (x3)2=(y3)(x-3)^{2}=(y-3) A)  vertex: (3,3) focus: (3,3.25) directrix: y=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3,3.25) \\\text { directrix: } y=2.75\end{array}

Question 192

Multiple Choice

Find the vertex, focus, and directrix of the parabola. Graph the equation.
- (x3) 2=(y3) (x-3) ^{2}=(y-3)
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3) ^{2}=(y-3)      A)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3,3.25)  \\ \text { directrix: } y=2.75 \end{array}     B)   \begin{array}{l} \text { vertex: }(-3,-3)  \\ \text { focus: }(-2.75,-3)  \\ \text { directrix: } x=-3.25 \end{array}     C)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3.25,3)  \\ \text { directrix: } x=2.75 \end{array}      D)  vertex:   (-3,-3)    focus:   (-3,-2.75)    directrix:   y=-3.25
A)
 vertex: (3,3)  focus: (3,3.25)  directrix: y=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3,3.25) \\\text { directrix: } y=2.75\end{array}
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3) ^{2}=(y-3)      A)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3,3.25)  \\ \text { directrix: } y=2.75 \end{array}     B)   \begin{array}{l} \text { vertex: }(-3,-3)  \\ \text { focus: }(-2.75,-3)  \\ \text { directrix: } x=-3.25 \end{array}     C)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3.25,3)  \\ \text { directrix: } x=2.75 \end{array}      D)  vertex:   (-3,-3)    focus:   (-3,-2.75)    directrix:   y=-3.25

B)
 vertex: (3,3)  focus: (2.75,3)  directrix: x=3.25\begin{array}{l}\text { vertex: }(-3,-3) \\\text { focus: }(-2.75,-3) \\\text { directrix: } x=-3.25\end{array}
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3) ^{2}=(y-3)      A)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3,3.25)  \\ \text { directrix: } y=2.75 \end{array}     B)   \begin{array}{l} \text { vertex: }(-3,-3)  \\ \text { focus: }(-2.75,-3)  \\ \text { directrix: } x=-3.25 \end{array}     C)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3.25,3)  \\ \text { directrix: } x=2.75 \end{array}      D)  vertex:   (-3,-3)    focus:   (-3,-2.75)    directrix:   y=-3.25

C)
 vertex: (3,3)  focus: (3.25,3)  directrix: x=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3.25,3) \\\text { directrix: } x=2.75\end{array}
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3) ^{2}=(y-3)      A)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3,3.25)  \\ \text { directrix: } y=2.75 \end{array}     B)   \begin{array}{l} \text { vertex: }(-3,-3)  \\ \text { focus: }(-2.75,-3)  \\ \text { directrix: } x=-3.25 \end{array}     C)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3.25,3)  \\ \text { directrix: } x=2.75 \end{array}      D)  vertex:   (-3,-3)    focus:   (-3,-2.75)    directrix:   y=-3.25


D)
vertex: (3,3) (-3,-3)
focus: (3,2.75) (-3,-2.75)
directrix: y=3.25 y=-3.25
 Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3) ^{2}=(y-3)      A)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3,3.25)  \\ \text { directrix: } y=2.75 \end{array}     B)   \begin{array}{l} \text { vertex: }(-3,-3)  \\ \text { focus: }(-2.75,-3)  \\ \text { directrix: } x=-3.25 \end{array}     C)   \begin{array}{l} \text { vertex: }(3,3)  \\ \text { focus: }(3.25,3)  \\ \text { directrix: } x=2.75 \end{array}      D)  vertex:   (-3,-3)    focus:   (-3,-2.75)    directrix:   y=-3.25

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions